quarta-feira, 26 de dezembro de 2018


EFEITO FOTO-Espalhamento da Radiação Eletromagnética pela Matéria no sistema decadimens. e categorial Graceli


CONFORME É INSERIDO FÓTONS SOBRE UM SISTEMA DE MATERIAIS DIAMAGNÉTICO, PARAMAGNÉTICO, E FERROMAGNÉTICO SE TEM VARIAÇÕES DE ESPALHAMENTO DE PARTÍCILAS, FLUXOS QUÂNTICO E ESTADO E MOMENTUM QUÃNTICO, ESPALHAMENTO DE ENERGIAS, RADIAÇÕES, TEMPERATURA E ENTROPIAS, DIFRAÇÕES, INTERAÇÕES, TRANSFORMAÇÕES, DECAIMENTOS, CONDUTIVIDADES, E OUTROS.


 + [F,D, P] / 


x
decadimensional
x
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D

Denomina-se espalhamento o processo físico em que determinada forma de energia (radiação eletromagnética, partículas em movimento ou som) ao se propagar em uma trajetória linear sofre uma alteração de caminho devido interações com o meio pelo qual atravessam. O espalhamento também inclui o desvio da radiação por reflexão. Reflexões que sofrem espalhamento são freqüentemente chamadas de reflexões difusas e reflexões especulares (semelhantes a espelhos).
Diagrama de Feynman da dispersão entre dois elétrons pela emissão de um fóton virtual.[2]
No caso de espalhamento de partículas, é resultado de colisões entre moléculasátomoselétronsfótons e outras partículas. Exemplos incluem: dispersão de raios cósmicos na atmosfera superior da Terra; colisões de partículas dentro de aceleradores de partículas;
espalhamento de elétrons por átomos de gás em lâmpadas fluorescentes; e espalhamento de nêutrons dentro de reatores nucleares.
No meio de propagação, os tipos de não uniformidade que podem causar espalhamento, às vezes conhecidos como dispersores ou centros de dispersão, são numerosos demais para serem listados, mas uma pequena amostra inclui partículas, bolhas, gotículas, flutuações de densidade em fluidos, cristalitos em sólidos policristalinos, defeitos em sólidos monocristalinos rugosidade superficial, células em organismos e fibras têxteis em roupas. Os efeitos de tais características no caminho de quase qualquer tipo de onda de propagação ou partícula móvel podem ser descritos na estrutura da teoria de espalhamento.
Algumas áreas onde o espalhamento e a teoria de espalhamento são significativas incluem sensoriamento por radar, ultrassommédico, inspeção de wafer semicondutor, monitoramento de processo de polimerização, revestimento acústico, comunicações de espaço livre e imagens geradas por computador. A teoria da dispersão de partícula-partícula é importante em áreas como física de partículasfísica atômica, molecular e ópticafísica nuclear e astrofísica.

Espalhamento simples e múltiplo[editar | editar código-fonte]

Quando a radiação é apenas espalhada por um centro de dispersão localizado, isso é chamado de espalhamento único. É muito comum que os centros de dispersão sejam agrupados; nesses casos, a radiação pode se espalhar muitas vezes, no que é conhecido como espalhamento múltipla. A principal diferença entre os efeitos do espalhamento simples e múltiplo é que o primeiro pode ser tratado como um fenômeno aleatório e o segundo pode ser modelado como um processo mais determinístico onde os resultados combinados de um grande número de eventos de dispersão tendem a uma média. O espalhamento múltiplo pode, portanto, ser bem modelado com a teoria de espalhamento.
Como a localização de um único centro de dispersão geralmente não é bem conhecida em relação ao caminho da radiação, o resultado, que tende a depender fortemente da trajetória exata de entrada, parece aleatório para um observador. Este tipo de espalhamento seria exemplificado por um elétron sendo disparado em um núcleo atômico. Neste caso, a posição exata do átomo em relação ao caminho do elétron é desconhecida e seria imensurável, então a trajetória exata do elétron após a colisão não pode ser prevista. O espalhamento único é, portanto, freqüentemente descrito por distribuições de probabilidade.
A luz zodiacal é um brilho fraco e difuso, visível no céu noturno. O fenômeno deriva da dispersão da luz solar pela poeira interplanetária espalhada pelo plano do Sistema Solar.[3]
Com o espalhamento múltiplo, a aleatoriedade da interação tende a ser calculada através do grande número de eventos de espalhamento, de modo que o caminho final da radiação parece ser uma distribuição determinística da intensidade. Isto é exemplificado por um feixe de luz que passa através da névoa espessa. O espalhamento múltiplo é altamente análogo à difusão, e os termos dispersão e difusão múltipla são intercambiáveis ​​em muitos contextos. Elementos ópticos projetados para produzir dispersão múltipla são, portanto, conhecidos como difusores.
Nem todo espalhamento único é aleatório. Um feixe de laser bem controlado pode ser posicionado exatamente para dispersar uma partícula microscópica com um resultado determinístico, por exemplo. Tais situações também são encontradas na dispersão de radar, onde os alvos tendem a ser objetos macroscópicos, como pessoas ou aeronaves.
Da mesma forma, o espalhamento múltiplo às vezes pode ter resultados aleatórios, particularmente com radiação coerente. As flutuações aleatórias na intensidade dispersa da radiação coerente são chamadas de speckles. O speckle também ocorre se várias partes de uma onda coerente se espalham de diferentes centros. Em certas circunstâncias raras, o espalhamento múltiplo pode envolver apenas um pequeno número de interações, de modo que a aleatoriedade não seja completamente calculada. Estes sistemas são considerados alguns dos mais difíceis de modelar com precisão.
A descrição do espalhamento e a distinção entre espalhamento único e múltiplo estão intimamente relacionados à dualidade onda-partícula.

Teoria de espalhamento[editar | editar código-fonte]

Artigo principal: Teoria de espalhamento
A teoria da dispersão ou espalhamento é uma estrutura para estudar e compreender a dispersão de ondas e partículas. Prosaicamente, o espalhamento de onda corresponde à colisão e dispersão de uma onda com algum objeto material, por exemplo, a luz solar espalhada pelas gotas de chuva para formar um arco-íris. A dispersão também inclui a interação de bolas de bilhar em uma mesa, o espalhamento de Rutherford (ou mudança de ângulo) de partículas alfa por núcleos de ouro, o espalhamento de Bragg (ou difração de elétrons) e raios X por um aglomerado de átomos e o espalhamento inelástico de um fragmento de fissão ao atravessar uma folha fina. Mais precisamente, o espalhamento consiste no estudo de como soluções de equações diferenciais parciais, propagando-se livremente "no passado distante", se juntam e interagem umas com as outras ou com uma condição de contorno, e então se propagam "para o futuro distante".

Coeficiente de espalhamento[editar | editar código-fonte]

O coeficiente de espalhamento μs [cm-1] descreve um meio que contém muitas partículas espalhadoras em uma concentração descrita por uma densidade volumétrica ρ [cm3]; o coeficiente de espalhamento é essencialmente a seção de choque σs por unidade de volume do meio.[4][5]
O recíproco do coeficiente de espalhamento pode ser entendido como a distancia média que a partícula viaja antes de interagir com o meio, ou seja, ser espalhado.



postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].



+ [F,D, P] = ferromagnético, diamagnéticos, e paramagnético

 + [F,D, P]
X
DECADIMENS.
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



 + [F,D, P]
X
DECADIMENS.
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


PARA EFEITO COM ENTROPIA REVERSÍVEL.
 = entropia reversível


 + [F,D, P] +
X
DECADIMENS.
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



 + [F,D, P] + 
X
DECADIMENS.
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


com a inserção de fotons sobre materiais ferromagnético, diamagnéticos, e paramagnético se tem variáveis diferenciadas para absorções, emissões de partículas e cargas, como também variações diferenciadas para interações, transformações, potencial eletrostático, condutividade, decadimentos, entropias, entalpias, difrações, e outros. e sendo variável conforme o sistema decadimensional e categorial Graceli.


Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:
Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido
Mais detalhes em: Energia do fóton
Algebricamente:
Onde:
  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •  é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  •  é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.
Notas:
Se a energia do fóton (hf) não é maior que a função trabalho (), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.




postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.

T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].